

Vulnerability of Text-Matching in ML/Al Conference Reviewer Assignments to Collusions

Jhih-Yi (Janet) Hsieh, Aditi Raghunathan, Nihar B. Shah

TL;DR: We reveal vulnerabilities in automated reviewer assignments and offer suggestions to enhance their robustness.

Motivation

Collusion Rings manipulate reviewer assignment process to review each other's papers [1].

- A widespread problem in ML/Al and CS in general.
- Dishonest reviewer tries to get assigned a target paper.

Conferences are the main publication venues in ML/AI.

- Publish full papers (not abstracts) and are usually the terminal venue of publications.
- Receives 10,000+ submissions.

Automated Reviewer Assignment is common in ML/AI.

- Handles large amount of submissions.
- Text matching of submissions with reviewers' past papers.
- Reviewer bidding of specific papers to indicate interest.

Reviewer bidding is known to be manipulation-prone.

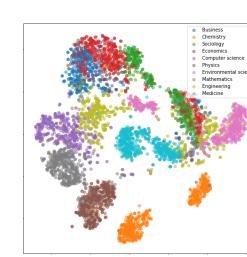
- Focus of much past research.
- Some venues (CVPR, ARR) have banned bidding.
- Most implicitly or explicitly assume text matching is safe.

Research Question

Is text matching safe from manipulation?

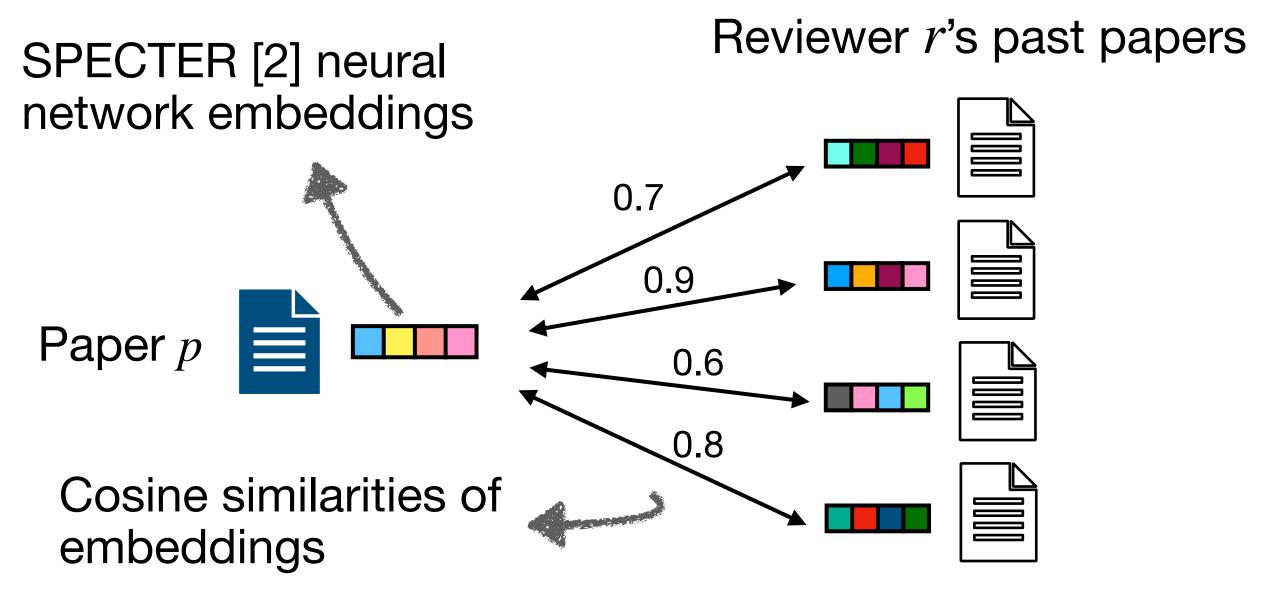
Problem Setting

SPECTER [2] model:



- Produces numerical representations, or "embeddings", of scientific papers.
- Similar papers have similar embeddings.

Paper-Reviewer Text Similarity, s(p, r):



Reviewer Assignments [3]:

subject to: Every paper gets at least certain #reviewers

Colluder Objective

Manipulate text similarity so the reviewer ranks in the top-1,3,5 of the conference's reviewers in terms of similarity to paper.

Calluday Objective

Attack Vectors

Adversarial abstract modification	Inspired by growing interests around commercial self-driving cars, our work improves upon existing object detection methods in terms of both accuracy and inference speed
Adversarial archive curation	Only keep paper(s) highly similar to <i>p</i> 0.7 0.9 0.8 0.6 0.7 0.9 0.8 0.6
They can hone attack on previous year's data	Natural Ranking = 101 Natural Ranking = 501 Natural Ranking = 501 Natural Ranking = 1001 $\rho = 0.83$ Natural Ranking = 501 $\rho = 0.83$ Natural Ranking = 501 $\rho = 0.92$ Manipulated Ranking in 2022 Natural Ranking = 1001 $\rho = 0.93$ Manipulated Ranking in 2022

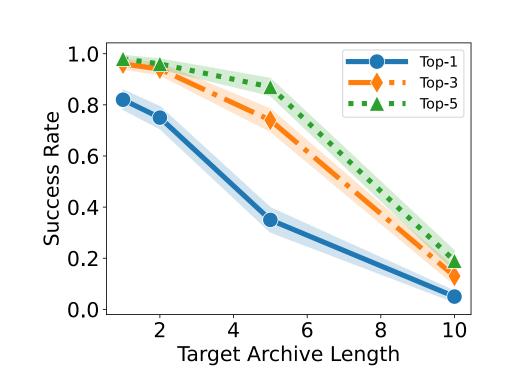
Attack Results

The attack successfully manipulates reviewer assignment.

Reviewer's	Attack Success Rates (SE)			
Natural Ranking	Top-1	Top-3	Top-5	
101	74(3)%	89(2)%	93(2)%	
501	60(5)%	76(4)%	83(4)%	
1001	48(5)%	63(5)%	67(5)%	

Defenses

Defense #1: Requiring reviewers to keep more papers in their archive reduces attack effectiveness.



Defense #2: Using average (mean) pooling instead of max pooling reduces attack effectiveness.

Aggregation	Attack Success Rates (SE)			
Method	Top-1	Top-3	Top-5	
Average	13(3)%	24(4)%	32(5)%	
Maximum	20(5)%	40(5)%	49(5)%	

Human Reviewers

116 samples of human expert mini-reviews were collected to evaluate the identifiability of adversarial abstracts:

Type of Complaint	Control	Experim ental
Issues with the writing style	8.2%	25.4%
Abrupt transitions & poor organization	2.0%	4.5%
Nonsensical or incorrect claims	4.1%	10.4%
Contains things never mentioned in the paper	4.1%	13.6%
Not representative of the paper content	2.0%	4.5%

Discussion

- Colluder may have plausible deniability.
- Increase reviewer awareness
- Introduce randomness in assignments
- Develop robust similarity scores

Practical Impact

Safeguards have been used by top-tier ML/Al conferences and implemented by OpenReview.

[1] Littman, M. L. Collusion rings threaten the integrity of computer science research. Communications of the ACM, 64(6):43–44, 2021

[2] Cohan, A., Feldman, S., Beltagy, I., Downey, D., and Weld, D. S. SPECTER: Document-level representation learning using citation-informed transformers. arXiv preprint arXiv:2004.07180, 2020.

[3] Shah, N. B. Challenges, experiments, and computational solutions in peer review. Communications of the ACM. Preprint available at https://www.cs.cmu.edu/~nihars/preprints/SurveyPeerReview.pdf, June 2022.

[4] Jecmen, S., Zhang, H., Liu, R., Shah, N. B., Conitzer, V., and Fang, F. Mitigating manipulation in peer review via randomized reviewer assignments. Advances in Neural Information Processing Systems, 33:12533–12545, 2020.
[5] Shah, N. B., Bok, M., Liu, X., and McCallum, A. Identity Theft in Al Conference Peer Review. Preprint available at https://arxiv.org/pdf/2508.04024, 2024.